

JBG-1603010102010400 Seat No. _____

M. Sc. (Sem. I) (CBCS) Examination

December - 2019

Physics: CT-04

(Electrodynamics & Plasma Physics) (New Course)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) Figures on right indicate marks.
- 1 Answer any seven:

14

- (a) Define mechanics. What are the different types of mechanics?
- (b) Name the four types of forces.
- (c) Show that, velocity of light (c) = $1/(\mu_o \epsilon_o)^{1/2}$ where μ_o and ϵ_o are permeability and permittivity of free space.
- (d) Prove that : $\nabla \cdot \overline{r} = 3$ and $\nabla \times \overline{r} = 0$.
- (e) Show that $\overline{J} = \sigma \overline{E}$ is an alternate form of Ohm's law.
- (f) What are the different states of matter?
- (g) List the techniques used for plasma confinement.
- (h) Define phase velocity and group velocity.
- (i) What are the necessary conditions for the existence of plasma?
- (j) What do you mean by magneto-hydrodynamics?

2	Attempt any two of the following:		
	(a)	Briefly discuss contribution of Maxwell in the field of electrodynamics. Why and how he modified Ampere's law?	7
	(b)	Discuss how Maxwell's equations get modified for insulting material or vacuum? Thus, derive wave	7
	(c)	equations for \overline{E} and \overline{B} . Derive necessary boundary conditions for normal and	7
		tangential components of \overline{B} and \overline{H} at a boundary between two media.	
3		wer the following questions:	7
	(a)	Define Scalar and Vector potentials and express	7
	4.1	Maxwell's equations in terms of V and \overline{A} .	_
	(b)	An electromagnetic wave of angular frequency (w) incident normally at the interface between the two linea media, derive necessary formulae for reflection (R) and transmission (T) coefficients. OR	7 r
3	Answer the following questions:		
	(a)	Discuss in detail, magnetic mirror effect.	7
	(b)	Discuss in detail, applications of plasma in various fields.	7
4	Answer any two questions:		
	(a)		7
		of uniform magnetic field \overline{B} when electric field is absent	t
		$\lceil \overline{E} = 0 \rceil$.	
	(b)	What are the main and subtypes of plasma instabilities? Discuss any three in detail.	7
	(c)	Discuss in detail: Plasma Oscillations and Whistler mode.	7
5	Write short notes on any two:		
	(a)	Electromagnetic waves in conductor (skin depth).	
	(b)	Gauge transformation.	
	(c)	Motion of charged particle under the influence	
	<i>(</i> 1)	of \overline{E} and \overline{B} .	
	(d)	Phase velocity and Group velocity.	